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Abstract—Stochastic computing (SC) reduces the complexity
of computation by representing numbers with long independent
bit-streams. However, increasing performance in SC comes with
increase in area and loss in accuracy. Processing in memory
(PIM) with non-volatile memories (NVMs) computes data in-
place, while having high memory density and supporting bit-
parallel operations with low energy. In this paper, we propose
SCRIMP for stochastic computing acceleration with resistive
RAM (ReRAM) in-memory processing, which enables SC in
memory. SCRIMP can be used for a wide range of applications.
It supports all SC encodings and operations in memory. It max-
imizes the performance and energy efficiency of implementing
SC by introducing novel in-memory parallel stochastic number
generation and efficient implication-based logic in memory. To
show the efficiency of our stochastic architecture, we implement
image processing on the proposed hardware.

I. INTRODUCTION

The era of Internet of Things (IoT) is expected to create

billions of inter-connected devices which are expected to be

doubled every year [1], [2]. To ensure network scalability,

security, and system efficiency, much of IoT data processing

need to run at least partly on the devices at the edge of

the internet [3]. However, running data intensive workloads

with large datasets on traditional cores results in high energy

consumption and slow processing speed due to the large

amount of data movement between memory and processing

units. Interestingly, new computing paradigms have shown the

capability to perform complex computations at lower area and

power costs [?], [4], [5]. Stochastic Computing (SC) [6] is one

such paradigm, which represents each data point in the form of

a bit-stream, where the probability of having ‘1’s corresponds

to the value of the data [7], [8]. Representing data in such a

format does increase the size of data, with SC requiring 2n bits

to precisely represent an n-bit number. However, it comes with

the benefit of extremely simplified computations and tolerance

to noise [7], [9]. However, with all its positives, SC comes

with some disadvantages. (i) Generating stochastic numbers is

expensive and is a key bottleneck in SC designs, consuming

as much as 80% [10] of total design area. (ii) Increasing

the accuracy of SC requires increasing the bit-stream length,

resulting in higher latency and area. (iii) Increasing the speed

of SC comes at the expense of more logic gates, resulting in

larger area. These pose a big challenge which cannot be solved

with today’s CMOS technology.

Processing In-Memory (PIM) is an implementation approach

that uses high-density memory cells as computing elements

[11]. Specifically, PIM with non-volatile memories (NVMs)

like resistive random accessible memory (ReRAM) has shown

great potential for performing in-place computations and

hence, achieving huge benefits over conventional computing

architectures [12], [13], [14], [15], [16], [17]. ReRAM boast

of (i) small cell sizes, making it suitable to store and process

large bit-streams [18], (ii) low energy consumption for binary

computations, making it suitable for huge number of bitwise

operations in SC, (iii) high bit-level parallelism, making it

suitable for bit-independent operations in memory, and (iv)

stochastic nature at sub-threshold level, making it suitable for

generating stochastic numbers.

SCRIMP combines the basic properties of ReRAM and SC

to make implementation of SC on PIM highly efficient. First,

SCRIMP exploits the stochastic nature of ReRAM devices

to propose a new stochastic number generation scheme. This

completely eliminates the use of stochastic number generators

which can consume up to 80% area on a SC chip. It implements,

for the first time, implication logic in regular crossbars. This

enables SCRIMP to combine various logic families to execute

logic operations more efficiently. SCRIMP implementation of

basic SC operators using implication logic are faster and more

efficient than state-of-the-art. We evaluate SCRIMP over six

general image processing applications.

II. RELATED WORK

A. Stochastic Computing

Stochastic computing (SC) represents numbers in terms of

probabilities in long independent bit-streams. Unlike multipli-

cation, stochastic addition, or accumulation, is not a simple

operation. Several methods have been proposed which involve

a direct trade-off between the accuracy and complexity of

operation [19], [20], [21]. Many arithmetic functions like

trigonometric, logarithmic, and exponential functions can be

approximated in stochastic domain with acceptable accuracy

[10], [22]. Stochastic computing is enabled by stochastic

number generators (SNGs), which perform binary to stochastic

conversion.

SC re-emerged as an active area of research with the

introduction of IoT, where devices are small, less complex,

and need low latent results. There are recent work in multiple

directions. Some try to improve the efficiency of SC operations
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Fig. 1. Implementing operations using digital PIM.

by proposing new approximate implementations [20], [21]. The

work in [23], [24], [25] propose new encoding schemes for

SC which are more accurate than traditional encoding. Some

work also optimize SC for different applications [8], [24], [25],

[26], [27].

B. Digital Processing In Memory

A large number of recent designs enabling PIM in ReRAM

are based on analog computing [12], [13], [14]. Some recent

work has demonstrated ways to implement logic using ReRAM

switching [28], [29]. Digital processing in-memory exploits

variable switching of memristor to implement a variety of

logic functions inside memory [29], [30]. Figure 1 shows how

the output of operation changes with the applied voltage [29].

The output device switches whenever the voltage across it

exceeds a threshold [28]. As shown, these operations can be

implemented in parallel over multi-bits, even the entire row of

memory. Digital PIM allows high density operations within

memory without reading out the data. In this paper, we utilize

digital PIM to implement a majority of stochastic operations.

In addition, we also introduce, for the first time, support for

an entire class of digital logic, i.e. implication logic, in regular

crossbar memory using digital PIM.

III. STOCHASTIC PIM

In this section, we present the hardware innovations which

make SCRIMP efficient for SC. First, we present a PIM-B2S

conversion technique. Then, we propose a new way to compute

logic in memory. Next, we show how we bypass the physical

limitations of previous PIM designs to achieve a highly parallel

architecture. Last, we show the implementation different SC

operations in SCRIMP.

A. Stochastic Number Generation

The ReRAM device switching is probabilistic at sub-

threshold voltages, with the switching time following a Poisson

distribution [31]. For a fixed voltage, the switching probability

of a memristor can be controlled by varying the width of

the programming pulse. The group write technique presented

in [32] showed that stochastic numbers of large sizes can

be generated over multiple bits of a column in parallel It

first deterministically programs all the memory cells to zero

(RESET) and then stochastically, based on the input number,

programs them to one (SET). However, since digital PIM is

row-parallel, it is desirable to generate such a number over a

row. This can be achieved in two ways:

(a) (b)
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Fig. 2. Generation of stochastic numbers using (a) group write [32], (b)
SCRIMP row-parallel generation.

ON→OFF Group Write: To generate a stochastic number

over a row, we need to apply the same programming pulse to

the row. As shown before in Figure 1, the bipolar nature of

memristor allows it to switch only to ‘0’ by applying a voltage

at the wordline. Hence, a ON→OFF group write is needed.

Stochastic numbers can be generated over rows by applying

stochastic programming pulses at wordlines instead of bitlines.

However, a successful stochastic number generation requires

us to SET all the rows initially. This results in a large number

of SET operations. The SET phase is both slower as well as

more energy consuming than the RESET phase, making this

approach very inefficient. Hence, we propose a new generation

method.

SCRIMP Row-Parallel Generation: The switching of

memristor is based on the effective voltage across its terminals.

In order to achieve low static energy for initialization, we

RESET all the rows like the original group write. However,

instead of applying different voltage pulses, vt1,vt2, ...vtn, to

different bitlines, we apply a common pulse, vt ′ , to all the

bitlines. A pulse, vtx, applies a voltage v with a time width of

tx. Now, we apply pulses, vt1′ ,vt2′ , ...vtn′ , to different wordlines

such that vtx = vt ′ − vtx′ . It generates stochastic numbers over

multiple rows in parallel as shown in Figure 2b.

B. Efficient PIM Operations

SC multiplication with bipolar (unipolar, SM-SC) numbers

involves XNOR (AND).While the digital PIM discussed in

Section II-B implements these functions, they are inefficient

in terms of latency, energy consumption, memory requirement,

number of device switches. We propose to use a implication-

based logic. Implication (→, where A → B = A′+B) combined

with false (always zero) presents a complete logic family.

XNOR and AND are implemented using implication very

efficiently as described in Table I. Some previous work

implemented implication in ReRAM [33]. However, they

required additional resistors of specific value to be added to the

memory crossbar. Instead, SCRIMP enables, for the first time,

implication-based logic in conventional crossbar memory, with

the same components as the basic digital PIM. Hence, SCRIMP

supports both implication and basic digital PIM operations.

SCRIMP Implication in-memory: As discussed in Section

II-B, a memristor requires a voltage greater than vo f f (−von)

to switch from ‘1’ (‘0’) to ‘0’ (‘1’) to high resistive state

(HRS, logical ‘0’). We exploit this switching mechanism to

implement implication logic in-memory. Consider three cells,

two input cells and an output cell, in a row of crossbar memory
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Fig. 3. (a) Implication in a column/row, (b) XNOR in a column.

TABLE I
COMPARISON OF THE PROPOSED XNOR AND AND WITH

STATE-OF-THE-ART.

Latency Energy Memory Req. Device Sw.
(cycles) (fJ) (# of cells) (# of cells)

XNOR AND XNOR AND XNOR AND XNOR AND
SCRIMP 2 2 37.1 45.2 1 2 ≤2 ≤2

FELIX [29] 3 2 53.7 48.8 2 2 ≤3 ≤2
MAGIC [30] 5 3 120.29 64.1 5 3 ≤5 ≤5

as shown in Figure 3a. We apply an execution voltage, V0,

at the bitline corresponding to one of the inputs (in1), while

ground the other input (in2) and the output cell (out). Let out
be initialized to ‘1’. In this configuration, out switches to ‘0’

only when the voltage across it is greater or equal to vo f f . For

all the cases when in1 is ’0,’ most of the voltage drop is across

in1, resulting in a negligible voltage across out. In case in1

is ‘1,’ the voltage across out is ˜V0/3 and ˜V0/2 when in2 is

‘1’ and ‘0’ respectively. If 2 ∗ vo f f ≤ V0 < 3 ∗ vo f f , then out
switches only when in1 is ‘1’ and in2 is ‘0’. This results in

the truth table shown in Figure 3a, corresponding to in1 → in2.

To execute in2 → in1, V0 is applied to in2 while in1 and out
are grounded.

SCRIMP XNOR in-memory: XNOR (�) can be repre-

sented as, A�B = (A → B).(B → A). Instead of calculating

in1 → in2 and in2 → in1 separately and then ANDing them,

we first calculate in1 → in2 and then use its output cell to

implement in2 → in1 as shown in Figure 3b. In this way, we

eliminate separate execution of AND operation.

SCRIMP AND in-memory: AND (.) is represented as,

A.B = (A → B′)′. The inversion uses NOT presented in [33].

C. SC Arithmetic Operations in SCRIMP

Here, we explain how SCRIMP implements SC operations.

The operands are either generated using the B2S conversion

technique in Section III-A or are pre-stored in memory as

outputs of previous operations. They are present in different

rows of the memory, with their bits aligned. The output is

generated in the output row, bit-aligned with the inputs.

Multiplication: As explained in Section II, multiplication

of two numbers in stochastic domain involves a bitwise XNOR

(AND) between bipolar (unipolar, SM-SC) numbers across the

bit-stream length. This is implemented in SCRIMP using the

PIM technique explained in Section III-B.

Conventional Addition/Subtraction/Accumulation: Im-

plementations of different stochastic N-input accumulation

techniques (OR, MUX, and count-based) discussed in Section

II can be generalized to addition by setting the number of

inputs to two. In case of subtraction, the subtrahend is first

inverted using a single digital PIM NOT cycle. Then, any

addition technique can be used. The OR operation is supported

by SCRIMP using the digital PIM operations [29], generating

OR of N bits in single cycle. The operation can be executed in

parallel for the entire bit-stream, bl , and takes just one cycle to

compute the final output. To implement MUX-based addition

in memory, we first stochastically generate bl random numbers

between 1 to N using B2S conversion in Section III-A. Each

random number selects one of the N inputs for a bit position.

The selected input bit is read using the memory sense amplifiers

and stored in the output register. Hence, MUX-based addition

takes one cycle to generate one output bit, consuming bl cycles

for all the output bits. To implement parallel count (PC)-based

addition in memory, one input bit-stream (bl bits) is read out

by the sense amplifier every cycle and sent to counters. This

is done for N inputs sequentially, consuming N cycles. In the

end, counters store the number of ones at each bit position.

Other Arithmetic Operations: SCRIMP supports trigono-

metric, logarithmic, and exponential functions using truncated

Maclaurin Series expansion [22]. The expansion approximates

these functions using a series of multiplications and additions.

With just 2-5 expansion terms, it produces more accurate results

[22] than most other stochastic methods [10], [19].

IV. EVALUATION

A. Experimental Setup

We develop C++-based cycle-accurate simulator which

emulates the functionalities of SCRIMP. The simulator uses

the performance and energy characteristics of the hardware

are obtained from circuit level simulations for a 45nm CMOS

process technology using Cadence Virtuoso. We use VTEAM

memristor model [28] for our memory design simulation

with RON and ROFF of 10kΩ and 10MΩ respectively. As

workload, we consider SCRIMP efficiency on four general

image processing applications including: Sobel, Robert, Prewitt,
and BoxSharp. We use images from Caltech 101 [34] library.

B. SCRIMP Trade-offs

To evaluate the effect at application level, we implement

the general applications listed above using SCRIMP with an

input dataset of size 1kB. The results shown here use unipolar

encoding with AND-based multiplication, SCRIMP addition,

and Maclaurin series-based other arithmetic functions. Since

all these operations are scalable with the bit-stream length, the

latency of the operations doesn’t change. The minor increase in

the latency at application level with the length is due to the time

taken by stochastic-to-binary conversion circuits. However, this

change is negligible. Figure 4 shows the impact of bit-stream

length on different applications. On an average, both the area

and energy consumption of the applications increase by 8×,

when the bit-stream length increases from 512 to 4096, with
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an average 6.1dB PSNR gain. As shown in Figure 5, with a

PSNR of 29dB, the output of Sobel filter with bit-stream length

of 4096 is visibly similar to that of the exact computation.

C. SCRIMP and Memory Non-Idealities

Bit-Flips: Here, we evaluate the quality loss in SCRIMP

with increase in the number of bit-flips. We evaluate the general

applications with the same configuration as in Section IV-B

with a bit-stream length of 1024. The quality loss is measured

as the difference between accuracy with and without bit-flips.

Figure 6a shows that with 10% bit-flips, the average quality

loss is meagre 0.27%. When the bit-flips increase to 25%,

applications lose only 0.66% in accuracy.

Memory Lifetime: Previous work [14], [33], [35] uses

iterative process to implement multiplication and other complex

operations. The more the iterations, higher is the number of

operations and so is the per cell switching count. SCRIMP

reduces this complex iterative process to just one logic gate,

in case of multiplication, while it breaks down other complex

operations into a series of simple operations. Hence, achieving

less switching count per cell. Figure 6b shows that for

multiplication, SCRIMP increases the lifetime of memory by

5.9× and 6.6× as compared to [14] and [35] respectively.

V. CONCLUSION

In this paper, we proposed SCRIMP, a general in memory

processing architecture for stochastic computing on ReRAM.

SCRIMP is a highly parallel architecture which scales with

the size of stochastic computing. To achieve this, SCRIMP

proposes novel in-memory stochastic number generation and

implication in memory scheme. It supports all SC encoding

schemes and operations fully in memory.
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